Logo Raju's Resource Hub

COORDINATE GEOMETRY – 1 (Non Circuit Branches)

Google ad

Equation of a circle with given centre and radius – General equation of circles – Centre and radius of a circle from general equation – Concentric circles – Contact of circles – Orthogonal circles – Simple problems.

Definition:

A circle is the locus of a point which moves in a plane in such a way that its distance from a fixed point remains constant.   The fixed point is called the centre of the circle and the constant distance is called the radius of the circle.

Equation of the circle with centre (h, k)  and radius ‘r’ units.

Google ad

CP = r     

\[\sqrt{(x\ -\ h)^2\ +\ (y\ -\ k)^2}\ =\ r\ (Using\ distance\ formula)\]
\[(x\ -\ h)^2\ +\ (y\ -\ k)^2\ =\ r^2\]

Note:

The equation of the circle with centre (0, 0 ) and radius ‘r’ units is  x+ y2  = r2

\[\color {purple} {Example\ 1\ .}\ \color {red} {What\ is\ the\ equation\ of\ the\ circle}\ with\ centre\ at\ origin\ and\ radius\ 1\ unit?\ \hspace{15cm}\]
\[\color {blue} { Soln:}\ \hspace{20cm}\]
\[We\ know\ that\ the\ equation\ of\ circle\ is\ (x\ -\ h)^2\ +\ (y\ -\ k)^2\ =\ r^2\]
\[Given\ h\ =\ 0,\ k = 0\ and\ r\ =\ 1\]
\[(x\ -\ 0)^2\ +\ (y\ -\ 0)^2\ =\ 1^2\]
\[x^2\ +\ y^2\ =\ 1\]
\[The\ equation\ of\ the\ circle\ is\ \boxed{x^2\ +\ y^2\ -\ 1=\ 0}\]

\[\color {purple} {Example\ 2\ .}\ \color {red} {Find\ the\ equation\ of\ the\ circle}\ with\ centre\ (-5, 7)\ and\ radius\ 5\ units.\ \hspace{5cm}\]
\[\color {blue} { Soln:}\ Given\ centre\ =\ (-5, 7)\ \hspace{4cm}\ and\ radius\ =\ 5\ \hspace{6cm}\]
\[We\ know\ that\ the\ equation\ of\ circle\ is\ (x\ -\ h)^2\ +\ (y\ -\ k)^2\ =\ r^2\]
\[Given\ h\ =\ -\ 5,\ k = 7\ and\ r\ =\ 5\]
\[(x\ +\ 5)^2\ +\ (y\ -\ 7)^2\ =\ 5^2\]
\[x^2\ +\ 10\ x\ +\ 25\ +\ y^2\ -\ 14y\ +\ 49\ =\ 25\ \hspace{10cm}\]
\[x^2\ +\ y^2\ +\ 10\ x\ -\ 14y\ +\ 25\ +\ 49\ -\ 25\ =\ 0\ \hspace{10cm}\]
\[x^2\ +\ y^2\ +\ 10\ x\ -\ 14y\ +\ 49\ =\ 0\ \hspace{10cm}\]
\[\therefore\ The\ required\ equation\ of\ the\ circle\ is\ \hspace{7cm}\]
\[\boxed{x^2\ +\ y^2\ +\ 10\ x\ -\ 14\ y\ +\ 49\ =\ 0}\ \hspace{5cm}\]

\[\color {purple} {Example\ 3\ .}\ \color {red} {Write\ down\ the\ equation\ of\ the\ circle}\ whose\ centre\ is\ (0, – 2)\ and\ radius\ 5.\\ \hspace{5cm}\]
\[\color {blue} { Soln:}\ Given\ centre\ =\ (0, -2)\ \hspace{4cm}\ and\ radius\ =\ 5\ \hspace{6cm}\]
\[We\ know\ that\ the\ equation\ of\ circle\ is\ (x\ -\ h)^2\ +\ (y\ -\ k)^2\ =\ r^2\]
\[Given\ h\ =\ 0,\ k = -\ 2\ and\ r\ =\ 5\]
\[(x\ -\ 0)^2\ +\ (y\ +\ 2)^2\ =\ 5^2\]
\[x^2\ +\ y^2\ +\ 4y\ +\ 4\ =\ 25\ \hspace{10cm}\]
\[x^2\ +\ y^2\ +\ 4y\ +\ 4\ -\ 25\ =\ 0\ \hspace{10cm}\]
\[x^2\ +\ y^2\ +\ 4y\ -\ 21\ =\ 0\ \hspace{10cm}\]
\[\therefore\ The\ required\ equation\ of\ the\ circle\ is\ \hspace{7cm}\]
\[\boxed{x^2\ +\ y^2\ +\ 4y\ -\ 21\ =\ 0}\ \hspace{5cm}\]

General equation of the circle:     x2  +   y2  + 2gx  + 2fy  + c = 0

Centre = (-g , -f )         and    radius     r =  √( g2  + f2 – c)

\[\color {purple} {Example\ 4\ .}\ \color {red} {Find\ the\ centre\ and\ radius\ of\ the\ circle}\ x^2\ +\ y^2\ +\ 2\ x\ +\ 2\ y\ -\ 7\ =\ 0\ \hspace{5cm}\]
\[\color {blue} { Soln:}\ Given\ x^2\ +\ y^2\ +\ 2\ x\ +\ 2\ y\ -\ 7\ =\ 0\ \hspace{10cm}\]
\[We\ know\ that\ the\ equation\ of\ circle\ is\ x^2\ +\ y^2\ +\ 2\ g\ x\ +\ 2\ f\ y\ +\ c\ =\ 0\ \hspace{10cm}\]
\[2\ g\ =\ 2\ \hspace{3cm}\ 2\ f\ =\ 2\ \hspace{3cm}\ c\ =\ -7\]
\[g\ =\ 1\ \hspace{3cm}\ f\ =\ 1\ \hspace{3cm}\]
\[centre\ =\ (-\ g,\ -\ f)\ \hspace{4cm}\ r\ =\ \sqrt{(g^2\ +\ f^2\ -\ c)}\]
\[centre\ =\ (-\ 1,\ -\ 1)\ \hspace{4cm}\ r\ =\ \sqrt{(1^2\ +\ 1^2\ +\ 7)}\]
\[\hspace{6cm}\ r\ =\ \sqrt{(1\ +\ 1\ +\ 7)}\]
\[\hspace{6cm}\ r\ =\ \sqrt{9}\ =\ 3\]
\[\fbox{centre = (- 1, – 1) r = 3}\]

\[\color {purple} {Example\ 5\ .}\ \color {red} {Find\ the\ centre\ and\ radius\ of\ the\ circle}\ x^2\ +\ y^2\ -\ 8\ y\ +\ 3\ =\ 0\ \hspace{5cm}\]
\[\color {blue} {Soln:}\ Given\ x^2\ +\ y^2\ -\ 8\ y\ +\ 3\ =\ 0\ \hspace{10cm}\]
\[We\ know\ that\ the\ equation\ of\ circle\ is\ x^2\ +\ y^2\ +\ 2\ g\ x\ +\ 2\ f\ y\ +\ c\ =\ 0\ \hspace{10cm}\]
\[2\ g\ =\ 0\ \hspace{3cm}\ 2\ f\ =\ -\ 8\ \hspace{3cm}\ c\ =\ 3\]
\[g\ =\ 0\ \hspace{3cm}\ f\ =\ -\ 4\ \hspace{3cm}\]
\[centre\ =\ (-\ g,\ -\ f)\ \hspace{4cm}\ r\ =\ \sqrt{(g^2\ +\ f^2\ -\ c)}\]
\[centre\ =\ (0,\ 4)\ \hspace{4cm}\ r\ =\ \sqrt{(0^2\ +\ (-4)^2\ -\ 3)}\]
\[\hspace{6cm}\ r\ =\ \sqrt{(0\ +\ 16\ -\ 3)}\]
\[\hspace{6cm}\ r\ =\ \sqrt{13}\]
\[centre = (0, 4)\ \hspace{5cm}\ r\ =\ \sqrt{13}\]

Contact of Circles:

Case ( i ) :

Two circles touch externally if the distance between their centres is equal to sum of their radii.

i.e  C1C=  r1  +  r2

Case ( ii ) :

Two circles touch internally if the distance between their centres is equal to difference of their radii.

i.e  C1C= r1  –  ror   r2  –  r1

\[\color {purple} {Example\ 6\ .}\ \color {red} {Prove\ that}\ the\ circles\ x^2\ +\ y^2\ -\ 4x\ -\ 6y\ +\ 9\ = 0\ \hspace{5cm}\]\[ and\ x^2\ +\ y^2\ +\ 2x\ +\ 2y\ -\ 7\ = 0\ touch\ each\ other.\ \hspace{5cm}\]
\[\color {blue} {Soln:}\ \hspace {19cm}\]
\[Given\ x^2 + y^2 -\ 4x\ -\ 6y\ +\ 9\ = 0 ——————— (1)\]
\[Given\ x^2\ +\ y^2\ +\ 2x\ +\ 2y\ -\ 7\ = 0 ——————— (2)\]
\[From\ (1)\ \hspace 10cm\]
\[2g_1 =\ -\ 4\ \hspace 2cm\ 2f_1\ =\ -\ 6\ \hspace 2cm\ c_1 =\ 9\]
\[g_1 =\ -\ 2\ \hspace 2cm\ f_1 =\ -\ 3\ \hspace 2cm\ c_1 =\ 9\]
\[Centre\ is\ C_1 = (-g_1,\ -f_1)\ \hspace 10cm\ r_1 = \sqrt{g_1^2 + f_1^2 -c_1}\]
\[ C_1 = (2,\ \ 3)\ \hspace 10cm\ r_1 = \sqrt{(-2)^2\ +\ (-3)^2\ -\ 9}\]
\[ \hspace 10cm\ r_1 = \sqrt{4\ +\ 9\ -\ 9}\]
\[ \hspace 10cm\ r_1 = \sqrt{4}\ =\ 2\]
\[\boxed{C_1 = ( 2, 3)\ and\ r_1 =\ 2}\]
\[From\ (2)\ \hspace 10cm\]
\[2g_2 =\ 2\ \hspace 2cm\ 2f_2\ =\ 2\ \hspace 2cm\ c_2 =\ -\ 7\]
\[g_2 =\ 1\ \hspace 2cm\ f_2 =\ 1\ \hspace 2cm\ c_2 =\ -\ 7\]
\[Centre\ is\ C_2 = (-g_2,\ -f_2)\ \hspace 10cm\ r_2 = \sqrt{g_2^2 + f_2^2 -c_2}\]
\[ C_2 = (-\ 1\ , -\ 1)\ \hspace 10cm\ r_2 = \sqrt{(1)^2\ +\ (1)^2\ +\ 7}\]
\[ \hspace 10cm\ r_2\ = \sqrt{1\ + 1\ +\ 7}\]
\[ \hspace 10cm\ r_2 = \sqrt{9} =\ 3\]
\[\boxed{C_2 = (-\ 1, -\ 1)\ and\ r_2 =\ 3}\]
\[C_1C_2 = \sqrt{(-1\ -\ 2)^2\ +\ (-1\ -\ 3)^2}\]
\[C_1C_2 = \sqrt{(-3)^2\ +\ (-4)^2}\]
\[C_1C_2 = \sqrt{9\ +\ 16}\]
\[C_1C_2 = \sqrt{25}\ =\ 5\]
\[r_1\ +\ r_2\ =\ 2\ +\ 3\ =\ 5\ =\ C_1C_2\]
\[\boxed{C_1C_2 = r_1 + r_2}\]
\[The\ given\ circles\ touch\ each\ other\ externally\]
\[\color {purple} {Example\ 7\ .}\ \color {red} {Prove\ that\ the\ circles}\ x^2\ +\ y^2\ -\ 10\ x\ -\ 24\ y\ +\ 120\ =\ 0\ and\ \hspace{7cm}\]\[x^2\ +\ y^2\ =\ 400\ \color {red} {touch\ each\ other}\ \hspace{5cm}\]
\[\color {blue} {Soln:}\ \hspace{20cm}\]
\[Given\ x^2\ +\ y^2\ -\ 10\ x\ -\ 24\ y\ +\ 120\ =\ 0 ——————— (1)\]
\[Given\ x^2\ +\ y^2\ =\ 400 ——————— (2)\]
\[From\ (1)\ \hspace 10cm\]
\[2g_1 = – 10\ \hspace 2cm\ 2f_1 = – 24\ \hspace 2cm\ c_1 = 120\]
\[g_1 =\ – 5\ \hspace 2cm\ f_1 =\ – 12\ \hspace 2cm\ c_1 = 120\]
\[Centre\ is\ C_1 = (-g_1,\ -f_1)\ \hspace 10cm\ r_1 = \sqrt{g_1^2 + f_1^2 -c_1}\]
\[ C_1 = (5,\ 12)\ \hspace 10cm\ r_1 = \sqrt{(\ -\ 5)^2 + (-\ 12)^2\ -\ 120}\]
\[ \hspace 10cm\ r_1 = \sqrt{25\ +\ 144\ -\ 120}\]
\[ \hspace 10cm\ r_1 = \sqrt{169\ -\ 120}\]
\[ \hspace 10cm\ r_1 = \sqrt{49} =\ 7\]
\[\boxed{C_1 = ( 5, 12)\ and\ r_1 = 7}\]
\[From\ (2)\ \hspace 10cm\]
\[2g_2 = 0\ \hspace 2cm\ 2f_2 = 0\ \hspace 2cm\ c_2 = – 400\]
\[g_2 =\ 0 \hspace 2cm\ f_2 = 0\ \hspace 2cm\ c_2 = – 400\]
\[Centre\ is\ C_2 = (-g_2,\ -f_2)\ \hspace 10cm\ r_2 = \sqrt{g_2^2 + f_2^2 -c_2}\]
\[ C_2 = (0,\ 0)\ \hspace 10cm\ r_2 = \sqrt{(0)^2 +\ (0)^2 + 400}\]
\[ \hspace 10cm\ r_2 = \sqrt{0\ +\ 0\ +\ 400}\]
\[ \hspace 10cm\ r_2\ =\ \sqrt{400}\ =\ 20\]
\[\boxed{C_2 = ( 0, 0)\ and\ r_2\ =\ 20}\]
\[C_1C_2 = \sqrt{(0\ -\ 5)^2 + (0\ -\ 12)^2}\]
\[C_1C_2 = \sqrt{(-\ 5)^2 + (-\ 12)^2}\]
\[C_1C_2 = \sqrt{25\ +\ 144}\]
\[C_1C_2 = \sqrt{169}\ =\ 13\]
\[r_2 – r_1 \ =\ 20\ -\ 13\ =\ 7\ = C_1C_2\]
\[\boxed{C_1C_2 = r_2 – r_1}\]
\[The\ given\ circles\ touch\ each\ other\ internally\]

Google ad

Leave a Reply

Google ad
Google ad
Scroll to Top

Discover more from YANAMTAKSHASHILA

Subscribe now to keep reading and get access to the full archive.

Continue reading