Logo Raju's Resource Hub

RADIUS OF REVERSE CURVE USING GEOGEBRA CLASSIC – 5

Google ad
\[\text{Two parallel straights of V = 20m apart are to connected by a reverse curve}\ \hspace{15cm}\\ \text{consisting of arcs of same radius. The distance between the}\ \hspace{12cm}\\ \text{end points of the curve is L=200m}\ \hspace{10cm}\]
\[i.\ \text{To draw two parallel straights of 20m apart.}\ \hspace{15cm}\]
\[ii.\ \text{To draw the reverse curve joining to points on the parallel straights which}.\ \hspace{15cm}\\ \text{are 200m distance from one another.}\ \hspace{10cm}\]
\[iii.\ \text{To find the approximate value of the common radius of the reverse curve}\ \hspace{15cm}\]
\[iv.\ \text{Find the length of the whole reverse curve.}\ \hspace{15cm}\]
\[\color{green}{Step\ 1:}\ \text{Open Geogebra classic 5 (by double clicking on the icon)}\ \hspace{18cm}\]
\[\color{green}{Step\ 2:}\ \text{To draw the straight line by using input bar to type}\ l_1\ :y=0\ \hspace{10cm}\]
\[\color{green}{Step\ 3:}\ \text{To draw a another straight line by using input bar to type}\ l_2\ :y=20\ \hspace{10cm}\]
\[\color{green}{Step\ 4:}\ \text{To mark a point on}\ l_2,\ \hspace{20cm}\\ \text{by using the input bar type A =(l_2) and press the Enter key}\ \hspace{14cm}\]
\[\color{green}{Step\ 5:}\ \text{To mark a point on}\ l_1,\ \hspace{20cm}\\ \text{by using the input bar type B =(l_1) and press the Enter key}\ \hspace{14cm}\]
\[\color{green}{Step\ 6:}\ \text{To join the points A and B}\ \hspace{21cm}\\ \text{by using the input bar type L=Segment(A, B) and press the Enter key}\ \hspace{14cm}\]
\[\color{green}{Step\ 7:}\ \text{To fix the point A, move the point B using the move tool}\ \hspace{18cm}\\ \text{and fix a position for B so that L = 200m}\ \hspace{14cm}\]
\[\color{green}{Step\ 8:}\ \text{To mark the midpoint C of the line segment L = AB}\ \hspace{18cm}\\ \text{by using the input command C = Midpoint(L)}\ \hspace{14cm}\]
\[\color{green}{Step\ 9:}\ \text{To draw the perpendicular bisector line of the line segment AC,}\ \hspace{18cm}\\ \text{by using the input command b1:PerpendicularBisector(A,C)}\ \hspace{14cm}\]
\[\color{green}{Step\ 10:}\ \text{To mark the point F on b1}\ \hspace{20cm}\\ \text{by using the input bar to type F=Point(b1) and press the Enter key}\ \hspace{14cm}\]
\[\color{green}{Step\ 11:}\ \text{To draw the line segments AF}\ \hspace{21cm}\\ \text{by using the input commands AF=Segment(A, F) and press the Enter key}\ \hspace{14cm}\]
\[\color{green}{Step\ 12:}\ \text{To draw the line segments CF}\ \hspace{21cm}\\ \text{by using the input commands CF=Segment(C, F) and press the Enter key}\ \hspace{14cm}\]
\[\color{green}{Step\ 13:}\ \text{To draw the circular curve}\ \hspace{21cm}\\ \text{by using the input bar to type C1=Circular Arc(F,C,A)}\ \hspace{14cm}\]
\[\color{green}{Note:}\ \text{click and drag or move the point F on b1 so that the circular}\ \hspace{18cm}\\ \text{curve is below the line}\ l_2\ and\ l_2\ \text{is a tangent of that curve at A}\ \hspace{14cm}\]
\[\color{green}{Step\ 14:}\ \text{To draw the perpendicular bisector line of the line segment BC,}\ \hspace{18cm}\\ \text{by using the input command b2:PerpendicularBisector(B,C)}\ \hspace{14cm}\]
\[\color{green}{Step\ 15:}\ \text{To mark the point G on b2}\ \hspace{20cm}\\ \text{by using the input bar to type G=Point(b2) and press the Enter key}\ \hspace{14cm}\]
\[\color{green}{Step\ 16:}\ \text{To draw the line segment BG}\ \hspace{21cm}\\ \text{by using the input bar to type BG=Segment(B, G) and press the Enter key}\ \hspace{14cm}\]
\[\color{green}{Step\ 17:}\ \text{To draw the line segment CG}\ \hspace{21cm}\\ \text{by using the input bar to type CG=Segment(C, G) and press the Enter key}\ \hspace{14cm}\]
\[\color{green}{Step\ 18:}\ \text{To draw the circular curve}\ \hspace{21cm}\\ \text{by using the input bar to type C2=Circular Arc(G,C,B)}\ \hspace{14cm}\]
\[\color{green}{Note:}\ \text{click and drag or move the point G on b2 so that the circular}\ \hspace{18cm}\\ \text{curve is below the line}\ l_1\ and\ l_1\ \text{is a tangent of that curve at B}\ \hspace{14cm}\]
\[\color{green}{Step\ 19:}\ \text{To draw the circular c1}\ \hspace{21cm}\\ \text{by using the input bar to type C1=Circle (F,A,F)}\ \hspace{14cm}\]
\[\color{green}{Step\ 20:}\ \text{To draw the circular c2}\ \hspace{21cm}\\ \text{by using the input bar to type C2=Circle (G,B,G)}\ \hspace{14cm}\]
\[\color{green}{Step\ 21:}\ \text{To verify that the circular curves C1 and C2 are parts of the circles}\ \hspace{16cm}\\ \text{c1 and c2 respectively}\ \hspace{18cm}\]
\[\color{green}{Step\ 22:}\ \text{To find the length of the reverse curve from A to B}\ \hspace{16cm}\\ \text{by using the input command I =C1+C2}\ \hspace{18cm}\]
\[\color{green}{Step\ 23:}\ \text{The radius of the reverse curves is R=AF which is equal to CF,}\ \hspace{16cm}\\ \text{BG, and CG which are found in the algebra view.}\ \hspace{18cm}\]
\[\color{green}{Step\ 24:}\ \text{To create an input box for V, the distance between the}\ \hspace{16cm}\\ \text{parallel straights link with}\ I_2\ :\ y\ =\ 20\ \hspace{18cm}\]
DescriptionFormula / Value
Distance between parallels (V)V = 20
Distance between endpoint of the Inverse Curve (L)L = 200
Equation of the Circle c1\[(x-0)^2\ +\ (y+480.12)^2\ = 250116.95\]
centre of the Circle c1F=(0,- 480.01)
Radius of the Circle c1AF = 500.01
Equation of the Circle c2\[(x-196.87)^2\ +\ (y-478.7)^2\ =229156.98\
centre of the Circle c2G=(199.04,500.37)
Radius of the Circle c2BG=500.37
Radius of the reverse Curve (R)500
Length of the reverse Curve (I)I = 200.34
Distance Between Parallel Straights (V)Radius of the reverse Curve (R)Length of the reverse Curve (I)
Distance Between the Endpoints of the reverse curve (L)Radius of the reverse Curve (R)Length of the reverse Curve (I)

Google ad

Leave a Reply

Google ad
Google ad
Scroll to Top

Discover more from YANAMTAKSHASHILA

Subscribe now to keep reading and get access to the full archive.

Continue reading