1.1 ANALYTICAL GEOMETRY II

EQUATION OF CIRCLE

Definition:        

A circle is the locus of a point which moves in a plane in such a way that its distance from a fixed point remains constant.   The fixed point is called the centre of the circle and the constant distance is called the radius of the circle.

Lessons

Equation of the circle with centre (h, k)  and radius ‘r’ units.

CP = r                                                                                                                          

\[\sqrt{(x\ -\ h)^2\ +\ (y\ -\ k)^2}\ =\ r\ (Using\ distance\ formula)\]
\[(x\ -\ h)^2\ +\ (y\ -\ k)^2\ =\ r^2\]

Note:

The equation of the circle with centre (0, 0 ) and radius ‘r’ units is  x+ y2  = r2

\[\color {purple} {Example\ 1\ .}\ \color {red} {What\ is\ the\ equation\ of\ the\ circle}\ with\ centre\ at\ origin\ and\ radius\ 1\ unit?\ \hspace{15cm}\]
\[\color {blue} { Soln:}\ \hspace{20cm}\]
\[We\ know\ that\ the\ equation\ of\ circle\ is\ (x\ -\ h)^2\ +\ (y\ -\ k)^2\ =\ r^2\]
\[Given\ h\ =\ 0,\ k = 0\ and\ r\ =\ 1\]
\[(x\ -\ 0)^2\ +\ (y\ -\ 0)^2\ =\ 1^2\]
\[x^2\ +\ y^2\ =\ 1\]
\[The\ equation\ of\ the\ circle\ is\ \boxed{x^2\ +\ y^2\ =\ 1}\]

\[\color {purple} {Example\ 2\ .}\ \color {red} {Find\ the\ equation\ of\ the\ circle}\ with\ centre\ (-5, 7)\ and\ radius\ 5\ units.\ \hspace{5cm}\]
\[\color {blue} { Soln:}\ Given\ centre\ =\ (-5, 7)\ \hspace{4cm}\ and\ radius\ =\ 5\ \hspace{6cm}\]
\[We\ know\ that\ the\ equation\ of\ circle\ is\ (x\ -\ h)^2\ +\ (y\ -\ k)^2\ =\ r^2\]
\[Given\ h\ =\ -\ 5,\ k = 7\ and\ r\ =\ 5\]
\[(x\ +\ 5)^2\ +\ (y\ -\ 7)^2\ =\ 5^2\]
\[x^2\ +\ 10\ x\ +\ 25\ +\ y^2\ -\ 14y\ +\ 49\ =\ 25\ \hspace{10cm}\]
\[x^2\ +\ y^2\ +\ 10\ x\ -\ 14y\ +\ 25\ +\ 49\ -\ 25\ =\ 0\ \hspace{10cm}\]
\[x^2\ +\ y^2\ +\ 10\ x\ -\ 14y\ +\ 49\ =\ 0\ \hspace{10cm}\]
\[\therefore\ The\ required\ equation\ of\ the\ circle\ is\ \hspace{7cm}\]
\[\boxed{x^2\ +\ y^2\ +\ 10\ x\ -\ 14\ y\ +\ 49\ =\ 0}\ \hspace{5cm}\]

General equation of the circle:     x2  +   y2  + 2gx  + 2fy  + c = 0

Centre = (-g , -f )         and    radius     r =  √( g2  + f2 – c)

\[\color {purple} {Example\ 3\ .}\ \color {red} {Find\ the\ centre\ and\ radius\ of\ the\ circle}\ x^2\ +\ y^2\ +\ 2\ x\ +\ 2\ y\ -\ 7\ =\ 0\ \hspace{5cm}\]
\[\color {blue} { Soln:}\ Given\ x^2\ +\ y^2\ +\ 2\ x\ +\ 2\ y\ -\ 7\ =\ 0\ \hspace{10cm}\]
\[We\ know\ that\ the\ equation\ of\ circle\ is\ x^2\ +\ y^2\ +\ 2\ g\ x\ +\ 2\ f\ y\ +\ c\ =\ 0\ \hspace{10cm}\]
\[2\ g\ =\ 2\ \hspace{3cm}\ 2\ f\ =\ 2\ \hspace{3cm}\ c\ =\ -7\]
\[g\ =\ 1\ \hspace{3cm}\ f\ =\ 1\ \hspace{3cm}\]
\[centre\ =\ (-\ g,\ -\ f)\ \hspace{4cm}\ r\ =\ \sqrt{(g^2\ +\ f^2\ -\ c)}\]
\[centre\ =\ (-\ 1,\ -\ 1)\ \hspace{4cm}\ r\ =\ \sqrt{(1^2\ +\ 1^2\ +\ 7)}\]
\[\hspace{6cm}\ r\ =\ \sqrt{(1\ +\ 1\ +\ 7)}\]
\[\hspace{6cm}\ r\ =\ \sqrt{9}\ =\ 3\]
\[\fbox{centre = (- 1, – 1) r = 3}\]

\[\color {purple}{Example\ 4\ .}\ \color {red} {Find\ the\ centre\ and\ radius\ of\ the\ circle}\ x^2\ +\ y^2\ -\ 4\ x\ +\ 8\ y\ -\ 5\ =\ 0\ \hspace{5cm}\]
\[ \color {blue} {Soln:}\ Given\ x^2\ +\ y^2\ -\ 4\ x\ +\ 8\ y\ -\ 5\ =\ 0\ \hspace{10cm}\]
\[We\ know\ that\ the\ equation\ of\ circle\ is\ x^2\ +\ y^2\ +\ 2\ g\ x\ +\ 2\ f\ y\ +\ c\ =\ 0\ \hspace{10cm}\]
\[2\ g\ =\ -\ 4\ \hspace{3cm}\ 2\ f\ =\ 8\ \hspace{3cm}\ c\ =\ -\ 5\]
\[g\ =\ -\ 2\ \hspace{3cm}\ f\ =\ 4\ \hspace{3cm}\]
\[centre\ =\ (-\ g,\ -\ f)\ \hspace{4cm}\ r\ =\ \sqrt{g^2\ +\ f^2\ -\ c}\]
\[centre\ =\ (2,\ -\ 4)\ \hspace{4cm}\ r\ =\ \sqrt{(-\ 2)^2\ +\ 4^2\ +\ 5}\]
\[\hspace{6cm}\ r\ =\ \sqrt{4\ +\ 16\ +\ 5}\]
\[\hspace{6cm}\ r\ =\ \sqrt{25}\]
\[\fbox{centre = (2, – 4) r = 5}\]

\[\color {purple} {Example\ 5\ .}\ \color {red} {Find\ the\ centre\ and\ radius\ of\ the\ circle}\ x^2\ +\ y^2\ -\ 8\ y\ +\ 3\ =\ 0\ \hspace{5cm}\]
\[\color {blue} {Soln:}\ Given\ x^2\ +\ y^2\ -\ 8\ y\ +\ 3\ =\ 0\ \hspace{10cm}\]
\[We\ know\ that\ the\ equation\ of\ circle\ is\ x^2\ +\ y^2\ +\ 2\ g\ x\ +\ 2\ f\ y\ +\ c\ =\ 0\ \hspace{10cm}\]
\[2\ g\ =\ 0\ \hspace{3cm}\ 2\ f\ =\ -\ 8\ \hspace{3cm}\ c\ =\ 3\]
\[g\ =\ 0\ \hspace{3cm}\ f\ =\ -\ 4\ \hspace{3cm}\]
\[centre\ =\ (-\ g,\ -\ f)\ \hspace{4cm}\ r\ =\ \sqrt{(g^2\ +\ f^2\ -\ c)}\]
\[centre\ =\ (0,\ 4)\ \hspace{4cm}\ r\ =\ \sqrt{(0^2\ +\ (-4)^2\ -\ 3)}\]
\[\hspace{6cm}\ r\ =\ \sqrt{(0\ +\ 16\ -\ 3)}\]
\[\hspace{6cm}\ r\ =\ \sqrt{13}\]
\[centre = (0, 4)\ \hspace{5cm}\ r\ =\ \sqrt{13}\]

\[\color {purple} {Example\ 6:}\ \color {red} {Show\ that\ the\ straight\ line}\ 4\ x-\ y\ =\ 17\ passes\ through\ \hspace{15cm}\]\[the\ centre\ of\ the\ circle\ x^2\ +\ y^2\ -\ 8\ x\ +\ 2\ y\ +\ 3\ =\ 0\ \hspace{5cm}\]
\[\color {blue} { Soln:}\ Given\ x^2\ +\ y^2\ -\ 8\ x\ +\ 2\ y\ +\ 3\ =\ 0\ \hspace{10cm}\]
\[We\ know\ that\ the\ equation\ of\ circle\ is\ x^2\ +\ y^2\ +\ 2\ g\ x\ +\ 2\ f\ y\ +\ c\ =\ 0\ \hspace{10cm}\]
\[2\ g\ =\ -\ 8\ \hspace{3cm}\ 2\ f\ =\ 2\ \hspace{3cm}\ c\ =\ 3\]
\[g\ =\ -\ 4\ \hspace{3cm}\ f\ =\ 1\ \hspace{3cm}\]
\[centre\ =\ (-\ g,\ -\ f)\]
\[centre\ =\ (4,\ -\ 1)\]
\[4x\ -\ y=\ 17\ ——–(1)\ \hspace{10cm}\]
\[put\ x\ =\ 4,\ y\ =\ -\ 1\ in\ equation\ (1)\]
\[4(4)\ – (-1)\ =\ 17\]
\[17\ =\ 17\]
\[(4, -1)\ satisfies\ (1)\]
\[Hence\ the\ straight\ line\ 4\ x-\ y\ =\ 17\ passes\ through\ \hspace{15cm}\]\[the\ centre\ of\ the\ circle\ x^2\ +\ y^2\ -\ 8\ x\ +\ 2\ y\ +\ 3\ =\ 0\]

\[\color {purple} {Example\ 7:}\ \color {red} {Find\ the\ equation\ of\ the\ circle}\ \hspace{10cm}\]\[passing\ through\ the\ point\ A(2 ,-3)\ and\ having\ its\ centre\ at\ C(-5, 1)\ \hspace{5cm}\]
\[\color {blue} {Soln:}\ r\ =\ \sqrt{(-\ 5\ -\ 2)^2\ +\ (1\ +\ 3)^2}\ \hspace{15cm}\]
\[=\ \sqrt{(-7)^2\ +\ (4)^2}\ \hspace{10cm}\]
\[=\ \sqrt{49\ +\ 16}\ \hspace{10cm}\]
\[r=\ \sqrt{65}\ \hspace{10cm}\]
\[We\ know\ that\ the\ equation\ of\ circle\ is\ (x\ -\ h)^2\ +\ (y\ -k)^2\ =\ r^2\ \hspace{7cm}\]
\[Here\ h\ =\ -\ 5,\ k\ =\ 1\ (Given)\ and\ r\ =\ \sqrt{65}\ \hspace{10cm}\]
\[(x\ +\ 5)^2\ +\ (y\ -\ 1)^2\ =\ (\sqrt{65})^2\ \hspace{10cm}\]
\[x^2\ +\ 10\ x\ +\ 25\ +\ y^2\ -\ 2y\ +\ 1\ =\ 65\ \hspace{10cm}\]
\[x^2\ +\ y^2\ +\ 10\ x\ -\ 2y\ +\ 26\ -\ 65\ =\ 0\ \hspace{10cm}\]
\[x^2\ +\ y^2\ +\ 10\ x\ -\ 2y\ -\ 39\ =\ 0\ \hspace{10cm}\]
\[\therefore\ The\ required\ equation\ of\ the\ circle\ is\ \hspace{7cm}\]
\[\boxed{x^2\ +\ y^2\ +\ 10\ x\ -\ 2y\ -\ 39\ =\ 0}\ \hspace{5cm}\]

\[\color {purple} {Example\ 8:}\ \color {red} {Find\ the\ equation\ of\ the\ circle}\ \hspace{10cm}\]\[having\ centre\ (2,-1)\ and\ passing\ through\ the\ point\ (8,7)\ \hspace{5cm}\]
\[\color {blue} {Soln:}\ r\ =\ \sqrt{(8\ -\ 2)^2\ +\ (7\ +\ 1)^2}\ \hspace{15cm}\]
\[=\ \sqrt{(6)^2\ +\ (8)^2}\ \hspace{10cm}\]
\[=\ \sqrt{36\ +\ 64}\ \hspace{10cm}\]
\[r=\ \sqrt{100}\ =\ 10\ \hspace{10cm}\]
\[We\ know\ that\ the\ equation\ of\ circle\ is\ (x\ -\ h)^2\ +\ (y\ -k)^2\ =\ r^2\ \hspace{7cm}\]
\[Here\ h\ =\ 2,\ k\ =\ -\ 1\ (Given)\ and\ r\ =\ 10\ \hspace{10cm}\]
\[(x\ -\ 2)^2\ +\ (y\ +\ 1)^2\ =\ 10^2\ \hspace{10cm}\]
\[x^2\ -\ 4\ x\ +\ 4\ +\ y^2\ +\ 2y\ +\ 1\ =\ 100\ \hspace{10cm}\]
\[x^2\ +\ y^2\ -\ 4\ x\ +\ 2y\ +\ 5\ -\ 100\ =\ 0\ \hspace{10cm}\]
\[x^2\ +\ y^2\ -\ 4\ x\ +\ 2y\ -\ 95 =\ 0\ \hspace{10cm}\]
\[\therefore\ the\ required\ equation\ of\ the\ circle\ is\ \hspace{7cm}\]
\[\boxed{x^2\ +\ y^2\ -\ 4\ x\ +\ 2y\ -\ 95\ =\ 0}\ \hspace{5cm}\]

Equation of circle on the line joining the points  ( x1,  y1 ) and ( x2,  y2 ) as diameter :

\[(x\ -\ x_1)(x\ -\ x_2)\ +\ (y\ -\ y_1)(y\ -\ y_2)\ =\ 0\]
\[\color {purple} {Example\ 9:}\ \color {red} {Find\ the\ equation\ of\ the\ circle}\ on\ the\ line\ joining\ the\ points\ (2,3),\ (-\ 4,\ 5)\ as\ diameter.\]\[\color{red}{Aslo\ find\ the\ centre\ and\ radius}\ of\ the\ circle\ \hspace{5cm}\]
\[\color {blue} {Soln:}\ \hspace{18cm}\]
\[(x\ -\ x_1)(x\ -\ x_2)\ +\ (y\ -\ y_1)(y\ -\ y_2)\ =\ 0\]
\[Given\ x_1\ =\ 2,\ y_1\ =\ 3,\ x_2\ =\ -\ 4,\ y_2\ =\ 5\]
\[(x\ -\ 2)(x\ +\ 4)\ +\ (y\ -\ 3)(y\ -\ 5)\ =\ 0\]
\[x^2\ +\ 4\ x\ – 2\ x\ – \ 8\ +\ y^2\ -\ 5y\ -\ 3y\ +\ 15\ =\ 0\]
\[x^2\ +\ 2\ x\ +\ y^2\ -\ 8y\ +\ 7\ =\ 0\]
\[x^2\ +\ y^2\ +\ 2\ x\ -\ 8y\ +\ 7\ =\ 0\]
\[\therefore\ the\ equation\ of\ the\ circle\ is\ \hspace{7cm}\]
\[\boxed{x^2\ +\ y^2\ +\ 2\ x\ -\ 8\ y\ +\ 7\ =\ 0}\ \hspace{5cm}\]
\[comparing\ with\ x^2\ +\ y^2\ +\ 2\ g\ x\ +\ 2\ f\ y\ +\ c\ =\ 0\]
\[2\ g\ =\ 2\ \hspace{3cm}\ 2\ f\ =\ -\ 8\ \hspace{3cm}\ c\ =\ 7\]
\[g\ =\ 1\ \hspace{3cm}\ f\ =\ -\ 4\ \hspace{3cm}\]
\[centre\ =\ (-\ g,\ -\ f)\ \hspace{4cm}\ r\ =\ \sqrt{g^2\ +\ f^2\ -\ c}\]
\[centre\ =\ (-\ 1,\ 4)\ \hspace{4cm}\ r\ =\ \sqrt{1^2\ +\ (-4)^2\ -\ 7}\]
\[\hspace{6cm}\ r\ =\ \sqrt{1\ +\ 16\ -\ 7}\]
\[\hspace{6cm}\ r\ =\ \sqrt{17\ -\ 7}\]
\[\hspace{6cm}\ r\ =\ \sqrt{10}\]
\[\boxed{centre = (- 1, 4)\ \hspace{4cm}\ r\ =\ \sqrt{10}}\]

\[\color {purple} {Example\ 10}\ \color {red} {Find\ the\ equation\ of\ the\ circle}\ two\ of\ whose\ diameters\ are\ \hspace{15cm}\]\[x\ +\ y\ =\ 6\ and\ x\ +\ 2y=\ 4\ and\ its\ radius\ is\ 10\ units\ \hspace{10cm}\]
\[\color {blue} {Soln:}\ x\ +\ y\ =\ 6\ ————–\ (1)\ \hspace{15cm}\]
\[x\ +\ 2y\ =\ 4\ ————–\ (2)\ \hspace{15cm}\]
\[(1)\ -\ (2)\ \implies\ -\ y\ =\ 2\ \hspace{10cm}\]
\[\therefore\ \boxed{y\ =\ -\ 2}\ \hspace{10cm}\]
\[Substitute\ y\ =\ -\ 2\ in\ (1)\ \hspace{10cm}\]
\[x\ -\ 2\ =\ 6\ \hspace{10cm}\]
\[x\ =\ 6\ +\ 2\ \hspace{10cm}\]
\[\therefore\ \boxed{x\ =\ 8}\ \hspace{10cm}\]
\[Centre\ =\ (8,\ -2)\ \hspace{10cm}\]
\[We\ know\ that\ the\ equation\ of\ circle\ is\ (x\ -\ h)^2\ +\ (y\ -k)^2\ =\ r^2\ \hspace{7cm}\]
\[Here\ h\ =\ 8,\ k\ =\ -\ 2\ and\ r\ =\ 10\ \hspace{10cm}\]
\[(x\ -\ 8)^2\ +\ (y\ +\ 2)^2\ =\ 10^2\ \hspace{10cm}\]
\[x^2\ -\ 16\ x\ +\ 64\ +\ y^2\ -\ 4y\ +\ 4\ =\ 100\ \hspace{10cm}\]
\[x^2\ +\ y^2\ -\ 16\ x\ -\ 4y\ +\ 68\ =\ 100\ \hspace{10cm}\]
\[x^2\ +\ y^2\ -\ 16\ x\ -\ 10y\ +\ 68\ -\ 100\ =\ 0\ \hspace{10cm}\]
\[\therefore\ The\ equation\ of\ the\ circle\ is\ \hspace{7cm}\]
\[\boxed{x^2\ +\ y^2\ -\ 16\ x\ -\ 10\ y\ -\ 32\ =\ 0}\ \hspace{5cm}\]

FAMILY OF CIRCLES

Concentric Circles:

Two or more circles having the same centre but differ in radii are called concentric circles.

Note:   Equation of concentric circles differ only by the constant term. 

√ Concentric Circles (Definition and Example) | Σ Tricks
\[\color {purple} {Example\ 11\ .}\ \color {red} {Show\ that\ the\ circles}\ x^2\ +\ y^2\ -\ 4\ x\ +\ 2\ y\ +\ 5\ =\ 0\ \hspace{5cm}\]\[ and\ x^2\ +\ y^2\ -\ 4\ x\ +\ 2\ y\ +\ 5\ =\ 0\ are\ concentric\ circles\ \hspace{5cm}\]
\[\color {blue} {Soln:}\ \hspace{19cm}\]

From the two given equations of the circles, we observe that the constant term alone differs

∴The given circles are concentric circles.

\[\color {purple} {Example\ 12\ .}\ \color {red} { Find\ the\ equation\ of\ the\ circle}\ passing\ through\ the\ point\ (5 ,4)\ \hspace{7cm}\]\[and\ concentric\ to\ the\ circle\ x^2\ +\ y^2\ -\ 8\ x\ +\ 12\ y\ +\ 15\ =\ 0\ \hspace{5cm}\]
\[\color {blue} {Soln:}\ Equation\ of\ concentric\ circle\ be\ x^2\ +\ y^2\ -\ 8\ x\ +\ 12\ y\ +\ k\ =\ 0\ ———- (1)\ \hspace{6cm}\]
\[Put\ x\ = 5,\ y\ =\ 4\ in\ equation\ ( 1 )\ \hspace{10cm}\]
\[(5)^2\ +\ (4)^2\ -\ 8(5)\ +\ 12(4)\ +\ K\ =\ 0\ \hspace{10cm}\]
\[25\ +\ 16\ -\ 40\ +\ 48\ +\ K\ =\ 0\ \hspace{10cm}\]
\[49\ +\ K\ =\ 0\ \hspace{10cm}\]
\[K\ =\ -\ 49\ \hspace{10cm}\]
\[\therefore\ The\ required\ equation\ of\ the\ circle\ is\ \hspace{7cm}\]
\[\boxed{x^2\ +\ y^2\ -\ 8\ x\ +\ 12\ y\ -\ 49\ =\ 0}\ \hspace{5cm}\]

Orthogonal Circles:

Two circles   x2  +   y2  + 2g1x  +2f1y+c1 = 0 and  x2  +   y2  + 2g2x  + 2f2y +  c2 = 0 are said to be Orthogonal Circles if 

   2g1g2  + 2 f1 f2  =  c1 + c2

How to Show Two Circles are Orthogonal
\[\color {purple} {Example\ 13\ .}\ \color {red} {Prove\ that\ the\ circles}\ x^2\ +\ y^2\ -\ 4\ x\ +\ 6\ y\ +\ 4\ =\ 0\ \hspace{7cm}\]\[and\ x^2\ +\ y^2\ +\ 2\ x\ +\ 4\ y\ +\ 4\ =\ 0\ \color {red} {cut\ orthogonally}\ \hspace{8cm}\]
\[\color {blue} {Soln:}\ \hspace{20cm}\]
\[Given\ \hspace{10cm}\]
\[x^2\ +\ y^2\ -\ 4\ x\ +\ 6\ y\ +\ 4\ =\ 0 ——— (1)\]
\[x^2\ +\ y^2\ +\ 2\ x\ +\ 4\ y\ +\ 4\ =\ 0——— (2)\]
\[From\ (1)\ \hspace 10cm\]
\[2g_1 =\ -\ 4\ \hspace 2cm\ 2f_1\ =\ 6\ \hspace 2cm\ c_1 =\ 4\]
\[g_1 =\ -\ 2\ \hspace 2cm\ f_1 =\ 3\ \hspace 2cm\ c_1 =\ 4\]
\[From\ (2)\ \hspace 10cm\]
\[2g_2 =\ 2\ \hspace 2cm\ 2f_2 =\ 4\ \hspace 2cm\ c_2 =\ 4\]
\[g_2 =\ 1\ \hspace 2cm\ f_2 =\ 2\ \hspace 2cm\ c_2 =\ 4\]
\[The\ condition\ for\ orthogonally\ is\]
\[2\ g_1\ g_2\ +\ 2\ f_1\ f_2\ =\ c_1\ +\ c_2\]
\[2\ (-2)(1)\ +\ 2\ (3) (2)\ =\ 4\ +\ 4\]
\[-\ 4\ +\ 12 =\ 8\]
\[8\ =\ 8\]
\[\therefore\ The\ given\ two\ circles\ cut\ orthogonally\]

\[\color {purple} {Example\ 14\ .}\ \color{red}{Find\ the\ equation\ of\ the\ circle}\ passing\ through\ the\ origin\ and\ cuts\ orthogonally\ \hspace{3cm}\]\[each\ of\ the\ circles\ x^2\ +\ y^2\ -\ 6\ x\ +\ 8\ =\ 0\ and\ x^2\ +\ y^2\ -\ 2\ x\ -\ 2\ y\ -\ 7\ =\ 0\]
\[\color {blue} {Soln:}\ \hspace{20cm}\]
\[Let\ the\ equation\ of\ circle\ be\ x^2\ +\ y^2\ +\ 2\ g\ x\ +\ 2\ f\ y\ +\ c\ =\ 0\ ——-(1)\]
\[(1)\ passes through (0,\ 0)\]
\[(0)^2\ +\ (0)^2\ +\ 2\ g(0)\ +\ 2f(0)\ +\ c\ =\ 0\]
\[c\ =\ 0\]
\[Given\ \hspace{10cm}\]
\[x^2\ +\ y^2\ -\ 6\ x\ +\ 8\ =\ 0 ——— (2)\]
\[x^2\ +\ y^2\ -\ 2\ x\ -\ 2\ y\ -\ 7\ =\ 0——— (3)\]
\[From\ (2)\ \hspace 10cm\]
\[2g_1 = -\ 6\ \hspace 2cm\ 2f_1 = 0\ \hspace 2cm\ c_1 = 8\]
\[g_1 =\ -\ 3\ \hspace 2cm\ f_1 = 0\ \hspace 2cm\ c_1 =\ 8\]
\[From\ (3)\ \hspace 10cm\]
\[2g_2 = -2\ \hspace 2cm\ 2f_2 = -2\ \hspace 2cm\ c_2 = – 7\]
\[g_2 = -1\ \hspace 2cm\ f_2 = -1\ \hspace 2cm\ c_2 = – 7\]
\[Given\ Equation\ (1)\ is\ orthogonal\ with\ x^2\ +\ y^2\ -\ 6\ x\ +\ 8\ =\ 0\]
\[2\ g\ g_1\ +\ 2\ f\ f_1\ =\ c\ +\ c_1\]
\[2\ g(-\ 3)\ +\ 2\ f (0)\ =\ c\ +\ 8\]
\[-\ 6g\ +\ 0\ =\ 0\ +\ 8\]
\[-\ 6g\ =\ 8\]
\[g\ =\ -\ \frac{8}{6}\]
\[\boxed{g\ =\ -\ \frac{4}{3}}\]
\[Given\ Equation\ (1)\ is\ orthogonal\ with\ x^2\ +\ y^2\ -\ 2\ x\ -\ 2\ y\ -\ 7\ =\ 0\]
\[2\ g\ g_2\ +\ 2\ f\ f_2\ =\ c\ +\ c_2\]
\[2\ g(-\ 1)\ +\ 2\ f (- 1)\ =\ c\ -\ 7\]
\[-\ 2g\ -\ 2\ f\ =\ 0\ -\ 7\]
\[-\ 2(-\ \frac{4}{3})\ -\ 2\ f\ =\ -\ 7\]
\[\frac{8}{3}\ -\ 2\ f\ =\ -\ 7\]
\[2\ f\ =\ \frac{8}{3}\ +\ 7\]
\[2\ f\ =\ \frac{8\ +\ 21}{3}\]
\[2f\ =\ \frac{29}{3}\]
\[\boxed{f\ =\ \frac{29}{6}}\]
\[Required\ equation\ of\ the\ circle\ is\]
\[x^2\ +\ y^2\ +\ 2\ (\frac{-4}{3})\ x\ +\ 2\ (\frac{29}{6})\ y\ +\ 0\ =\ 0\]
\[x^2\ +\ y^2\ -\ \frac{8}{3}\ x\ +\ \frac{29}{3}\ y\ =\ 0\]
\[3x^2\ +\ 3y^2\ -\ 8\ x\ +\ 29\ y\ =\ 0\]

Contact of Circles:

Family of Circles - Study Material for IIT JEE | askIITians

Case ( i ) :

Two circles touch externally if the distance between their centres is equal to sum of their radii.

i.e  C1C=  r1  +  r2

Co-ordinates of point of contact are 

        P = ( (r1 x2 + r2 x1 ) / (r1  +  r2 ) ,  (r1 y2 + r2 y1 ) / (r1  +  r2 ) )

      where  C1 = (x1,  y1)   and   C2  =  (x2,  y2)

Case ( ii ) :

Learn Common Tangents To Two Circles meaning, concepts, formulas through  Study Material, Notes – Embibe.com

Two circles touch internally if the distance between their centres is equal to difference of their radii.

i.e  C1C= r1  –  ror   r2  –  r1

Co-ordinates of point of contact are 

        P = ( (r1 x2 – r2 x1 ) / (r1  –  r2 ) ,  (r1 y2 – r2 y1 ) / (r1  –  r2 ) )

      where  C1 = (x1,  y1)   and   C2  =  (x2,  y2)

\[\color {purple} {Example\ 15\ .}\ \color {red} {Prove\ that}\ the\ circles\ x^2\ +\ y^2\ + 2x\ -\ 4y\ -\ 3\ = 0\ \hspace{5cm}\]\[ and\ x^2\ +\ y^2\ -\ 8x\ +\ 6y\ +\ 7\ = 0\ touch\ each\ other.\ \hspace{5cm}\]
\[\color {blue} {Soln:}\ \hspace {19cm}\]
\[Given\ x^2 + y^2 + 2x\ -\ 4y\ -\ 3\ = 0 —–(1)\]
\[Given\ x^2\ +\ y^2\ -\ 8x\ +\ 6y\ +\ 7\ = 0 — (2)\]
\[From\ (1)\ \hspace 10cm\]
\[2g_1 = 2\ \hspace 2cm\ 2f_1 =\ -\ 4\ \hspace 2cm\ c_1 = -\ 3\]
\[g_1 = 1\ \hspace 2cm\ f_1 = -\ 2\ \hspace 2cm\ c_1 = – 3\]
\[Centre\ is\ C_1 = (-g_1,\ -f_1)\ \hspace 10cm\ r_1 = \sqrt{g_1^2 + f_1^2 -c_1}\]
\[ C_1 = (- 1,\ 2)\ \hspace 10cm\ r_1 = \sqrt{(1)^2 + (-2)^2 + 3}\]
\[ \hspace 10cm\ r_1 = \sqrt{1\ +\ 4\ +\ 3}\]
\[ \hspace 10cm\ r_1 = \sqrt{8}\ =\ 2\ \sqrt{2}\]
\[\boxed{C_1 = ( -1, 2)\ and\ r_1 =\ 2\ \sqrt{2}}\]
\[From\ (2)\ \hspace 10cm\]
\[2g_2 = -\ 8\ \hspace 2cm\ 2f_2 = 6\ \hspace 2cm\ c_2 =\ 7\]
\[g_2 = -\ 4\ \hspace 2cm\ f_2 =\ 3\ \hspace 2cm\ c_2 =\ 7\]
\[Centre\ is\ C_2 = (-g_2,\ -f_2)\ \hspace 10cm\ r_2 = \sqrt{g_2^2 + f_2^2 -c_2}\]
\[ C_2 =\ (4,\ -3)\ \hspace 10cm\ r_2 = \sqrt{(-4)^2 +\ (3)^2\ -\ 7}\]
\[ \hspace 10cm\ r_2 = \sqrt{16\ +\ 9\ -\ 7}\]
\[ \hspace 10cm\ r_2 = \sqrt{18} =\ 3\ \sqrt{2}\]
\[\boxed{C_2 = ( 3, -3)\ and\ r_2 = 8}\]
\[C_1C_2 = \sqrt{(-1-4)^2 +\ (2\ +\ (3))^2}\]
\[C_1C_2 = \sqrt{(-5)^2 + (5)^2}\]
\[C_1C_2 = \sqrt{25\ +\ 25}\]
\[C_1C_2 = \sqrt{50} =\ 5\ \sqrt{2}\]
\[r_1\ +\ r_2\ =\ 3\ \sqrt{2}\ +\ 2\ \sqrt{2}\ =\ 5\ \sqrt{2}\ =\ C_1C_2\]
\[\boxed{C_1C_2\ =\ r_1\ +\ r_2}\]
\[The\ given\ circles\ touch\ each\ other\ externally\]

\[\color {purple} {Example\ 16\ }\ \color {red} {Prove\ that}\ the\ circles\ x^2\ +\ y^2\ -\ 4x\ +\ 6y\ -\ 112\ = 0\ \hspace{5cm}\]\[and\ x^2\ +\ y^2\ -\ 10x\ -\ 6y\ +\ 14\ = 0\ touch\ each\ other.\ \hspace{5cm}\]
\[\color {blue} {Soln:}\ \hspace {19cm}\]
\[Given\ x^2 + y^2 -\ 4x\ +\ 6y\ -\ 112\ = 0 ——————— (1)\]
\[Given\ x^2 + y^2 – 4x\ +\ 6y\ -\ 112\ = 0 ——————— (2)\]
\[From\ (1)\ \hspace 10cm\]
\[2g_1 =\ -\ 4\ \hspace 2cm\ 2f_1\ =\ 6\ \hspace 2cm\ c_1 =\ -\ 112\]
\[g_1 =\ -\ 2\ \hspace 2cm\ f_1 =\ 3\ \hspace 2cm\ c_1 =\ -\ 112\]
\[Centre\ is\ C_1 = (-g_1,\ -f_1)\ \hspace 10cm\ r_1 = \sqrt{g_1^2 + f_1^2 -c_1}\]
\[ C_1 = (2,\ -\ 3)\ \hspace 10cm\ r_1 = \sqrt{(-2)^2\ +\ (3)^2\ +\ 112}\]
\[ \hspace 10cm\ r_1 = \sqrt{4\ +\ 9\ +\ 112}\]
\[ \hspace 10cm\ r_1 = \sqrt{125} =\ \sqrt{25\ ×\ 5}\ =\ 5\ \sqrt{5}\]
\[\boxed{C_1 = ( 2, -3)\ and\ r_1 =\ 5\ \sqrt{5}}\]
\[From\ (2)\ \hspace 10cm\]
\[2g_2 =\ -\ 10\ \hspace 2cm\ 2f_2\ =\ -\ 6\ \hspace 2cm\ c_2 =\ 14\]
\[g_2 =\ -\ 5\ \hspace 2cm\ f_2 =\ -\ 3\ \hspace 2cm\ c_2 =\ 14\]
\[Centre\ is\ C_2 = (-g_2,\ -f_2)\ \hspace 10cm\ r_2 = \sqrt{g_2^2 + f_2^2 -c_2}\]
\[ C_2 = (5\, 3)\ \hspace 10cm\ r_2 = \sqrt{(-5)^2\ +\ (-3)^2\ -\ 14}\]
\[ \hspace 10cm\ r_2\ = \sqrt{25\ + 9\ -\ 14}\]
\[ \hspace 10cm\ r_2 = \sqrt{20} =\ \sqrt{4\ ×\ 5}\ =\ 2\ \sqrt{5}\]
\[\boxed{C_2 = ( 5, 3)\ and\ r_2 =\ 2\ \sqrt{5}}\]
\[C_1C_2 = \sqrt{(5\ -\ 2)^2\ +\ (3\ +\ (3))^2}\]
\[C_1C_2 = \sqrt{(3)^2\ +\ (6)^2}\]
\[C_1C_2 = \sqrt{9\ +\ 36}\]
\[C_1C_2 = \sqrt{45}\ =\ \sqrt{9\ ×\ 5}\ =\ 3\ \sqrt{5}\]
\[r_1 – r_2\ =\ 5\ \sqrt{5}\ -\ 2\ \sqrt{5} =\ 3\ \sqrt{5}\ =\ C_1C_2\]
\[\boxed{C_1C_2 = r_1 – r_2}\]
\[The\ given\ circles\ touch\ each\ other\ internally\]

Exercise Problems

\[\LARGE{\color {purple} {PART- A}}\]
\[\color {purple} {1\ .}\ \color {red} {Find\ the\ equation\ of\ the\ circle}\ with\ centre\ (1, -2)\ and\ radius\ 5\ units.\ \hspace{5cm}\]
\[\color {purple} {2\ .}\ \color {red} {Find\ the\ equation\ of\ the\ circle}\ with\ centre\ (0, -3)\ and\ radius\ 2\ units.\ \hspace{5cm}\]
\[\color {purple} {3\ .}\ \color {red} {Write\ down\ the\ formula\ for\ center\ and\ radius\ of\ the\ circle}\ \hspace{7cm}\]\[x^2\ +\ y^2\ +\ 2\ g\ x\ +\ 2\ f\ y\ +\ c\ =\ 0\ \hspace{8cm}\]
\[\color {purple} {4\ .}\ \color {red} {Find\ the\ centre\ and\ radius\ of\ the\ circle}\ \hspace{10cm}\]\[x^2\ +\ y^2\ +\ 10\ x\ +\ 8\ y\ +\ 5\ =\ 0\ \hspace{5cm}\]
\[\color {purple} {5\ .}\ \color {red} {Find\ the\ centre\ and\ radius\ of\ the\ circle}\ x^2\ +\ y^2\ +\ 4\ x\ +\ 4\ y\ -\ 1\ =\ 0\ \hspace{5cm}\]
\[\color {purple} {6\ .}\ \color {red} {Show\ that}\ the\ circles\ x^2\ +\ y^2\ -\ 2\ x\ +\ 4\ y\ -\ 3\ =\ 0\ and\ \hspace{7cm}\]\[x^2\ +\ y^2\ -\ 2\ x\ +\ 4\ y\ +\ 5\ =\ 0\ \color {red} {are\ concentric\ circles}\ \hspace{5cm}\]
\[\LARGE{\color {purple} {PART- B}}\]
\[\color {purple} {7\ .}\ \color {red} {Show\ that}\ 2\ x\ +\ 3\ y\ +\ 9\ =\ 0\ \color {red} {is\ a\ diameter\ of\ the\ circle}\ x^2\ +\ y^2\ -\ 6\ x\ +\ 10\ y\ -\ 1\ =\ 0\ \hspace{5cm}\]
\[\color {purple} {8\ .}\ \color {red} { Find\ the\ equation\ of\ the\ circle}\ passing\ through\ the\ point\ (1 ,1)\ \hspace{7cm}\]\[and\ concentric\ to\ the\ circle\ x^2\ +\ y^2\ +\ 4\ x\ +\ 6\ y\ -\ 15\ =\ 0\ \hspace{5cm}\]
\[\color {purple} {9\ .}\ \color {red} { Find\ the\ equation\ of\ the\ circle}\ concentric\ with\ the\ circle\ x^2\ +\ y^2\ -\ 6\ x\ +\ 10\ y\ -\ 1\ =\ 0\ \hspace{7cm}\]\[and\ passing\ through\ the\ point\ (1,1)\ \hspace{5cm}\]
\[\color {purple} {10\ .}\ \color {red} { Find\ the\ equation\ of\ the\ circle}\ concentric\ with\ the\ circle\ x^2\ +\ y^2\ -\ 4\ x\ -\ 6\ y\ -\ 9\ =\ 0\ \hspace{7cm}\]\[and\ passing\ through\ the\ point\ (-4 ,-5)\ \hspace{5cm}\]
\[\color {purple} {11\ .}\ \color {red} {Find\ the\ equation\ of\ the\ circle}\ concentric\ with\ the\ circle\ x^2\ +\ y^2\ +\ 8\ x\ -\ 4\ y\ -\ 23\ =\ 0\ \hspace{7cm}\]\[and\ having\ radius\ 3\ units\ \hspace{5cm}\]
\[\LARGE{\color {purple} {PART- C}}\]
\[\color {purple} {12\ .}\ \color {red} {Find\ the\ equation\ of\ the\ circle}\ passing\ through\ the\ point\ (-7.1)\ \hspace{7cm}\]\[and\ having\ its\ centre\ at\ (-4,-3)\ \hspace{5cm}\]
\[\color {purple} {13\ .}\ \color {red} {Find\ the\ equation\ of\ the\ circle}\ two\ of\ whose\ diameters\ are\ \hspace{15cm}\]\[2x\ -\ 3y\ +\ 1\ =\ 0\ and\ x\ +\ 2y\ -\ 17\ =\ 0\ and\ its\ radius\ is\ 8\ units\ \hspace{10cm}\]
\[\color {purple} {14\ .}\ \color{red}{Find\ the\ equation\ of\ the\ circle}\ passing\ through\ the\ origin\ and\ cuts\ orthogonally\ \hspace{3cm}\]\[each\ of\ the\ circles\ x^2\ +\ y^2\ -\ 8\ y\ +\ 12\ =\ 0\ and\ x^2\ +\ y^2\ -\ 4\ x\ -\ 6\ y\ -\ 3\ =\ 0\]
\[\color {purple} {15\ .}\ \color {red} {Show\ that}\ the\ circles\ x^2 + y^2 + 2x – 8 = 0\ and\ x^2 + y^2 – 6x + 6y -46 = 0\ touch\ each\ other.\ \hspace10cm\]
\[\color {purple} {16\ .}\ \color {red} {Prove\ that}\ the\ circles\ x^2 + y^2\ -\ 2x\ +\ 6y\ +\ 6 = 0\ and\ \hspace {8cm}\]\[x^2 + y^2\ -\ 5x + 6y\ +\ 15\ = 0\ touch\ each\ other\ \hspace {7cm}\]
\[\color {purple} {17\ .}\ \color {red} {Prove\ that\ the\ circles}\ x^2\ +\ y^2\ -\ 10\ x\ -\ 24\ y\ +\ 120\ =\ 0\ and\ \hspace{7cm}\]\[x^2\ +\ y^2\ =\ 400\ \color {red} {touch\ each\ other}\ \hspace{5cm}\]
%d bloggers like this:
Available for Amazon Prime