Google ad
\[\color {purple} {Example\ 1\ :}\ \color{red}{If}\ A =\begin{bmatrix}
1 & 2 & 7 \\
0 & 4 & 5 \\
3 & 1 & 6 \\
\end{bmatrix}\ ,\ B =\begin{bmatrix}
1 & 3 & 1 \\
2 & 4 & 0 \\
1 & 7 & 5 \\
\end{bmatrix}\ \hspace{5cm}\]
\[\color {red}{Find\ A + B}\ \hspace{10cm}\]
\[\color {blue}{Solution:}\ A + B=\begin{bmatrix}
1 + 1 & 2 + 3 & 7 + 1 \\
0 + 2 & 4 + 4 & 5 + 0 \\
3 + 1 & 1 + 7 & 6 + 5 \\
\end{bmatrix}\ \hspace{6cm}\]
\[A + B=\begin{bmatrix}
2 & 5 & 8 \\
2 & 8 & 5 \\
4 & 8 & 11 \\
\end{bmatrix}\ \hspace{7cm}\]
\[\color {purple} {Example\ 2:}\ \color {red}{If}\ A =\begin{bmatrix}
2 & -3 & 8 \\
21 & 6 & -6 \\
4 & -33 & 19 \\
\end{bmatrix}\ ,\ B =\begin{bmatrix}
1 & -29 & -8 \\
2 & 0 & 3 \\
17 & 15 & 4 \\
\end{bmatrix}\ \hspace{7cm}\]\[\color {red}{Prove\ that\ (A\ +\ B)^T\ =\ A^T\ +\ B^T}\ \hspace{5cm}\]
\[\color {blue}{Solution:}\ Given\ A =\begin{bmatrix}
2 & -3 & 8 \\
21 & 6 & -6 \\
4 & -33 & 19 \\
\end{bmatrix}\ ,\ B =\begin{bmatrix}
1 & -29 & -8 \\
2 & 0 & 3 \\
17 & 15 & 4 \\
\end{bmatrix}\ \hspace{5cm}\]
\[A + B=\begin{bmatrix}
2 + 1 & -3 – 29 & 8 – 8 \\
21 + 2 & 6 + 0 & -6 + 3 \\
4 + 17 & -33 + 15 & 19 + 4 \\
\end{bmatrix}\ \hspace{6cm}\]
\[A + B=\begin{bmatrix}
3 & -32 & 0 \\
23 & 6 & -3\\
21 & -18 & 23\\
\end{bmatrix}\ \hspace{6cm}\]
\[(A + B)^T\ =\ \begin{bmatrix}
3 & 23 & 21 \\
-32 & 6 & – 18 \\
0 & -3 & 23\\
\end{bmatrix}\ \hspace{2cm}\ ——– (1)\]
\[A^T =\begin{bmatrix}
2 & 21 & 4 \\
-3 & 6 & -33 \\
8 & -6 & 19 \\
\end{bmatrix}\ \hspace{10cm}\]
\[B^T =\begin{bmatrix}
1 & 2 & 17 \\
-29 & 0 & 15 \\
– 8 & 3 & 4 \\
\end{bmatrix}\ \hspace{10cm}\]
\[A^T\ +\ B^T\ =\begin{bmatrix}
2 + 1 & 21\ +\ 2 & 4\ +\ 17\\
-3\ -\ 29 & 6 + 0 & -33 + 15 \\
8 – 8 & -6 + 3 & 19 + 4 \\
\end{bmatrix}\ \hspace{6cm}\]
\[A^T\ +\ B^T\ =\begin{bmatrix}
3 & 23 & 21\\
-32 & 6 & – 18 \\
0 & -3 & 23 \\
\end{bmatrix}\ \hspace{2cm}\ ———- (2)\]
\[From\ (1)\ and\ (2), It\ is\ concluded\ that (A\ +\ B)^T\ =\ A^T\ +\ B^T\]
Google ad
Raju's Resource Hub