- Answer all questions in PART- A. Each question carries one mark.
- Answer any ten questions in PART- B. Each question carries two marks.
- Answer all questions by selecting either A or B. Each question carries fifteen marks. (7 + 8)
Clarks Table and programmable calculators are not permitted.
\[\underline{PART\ -\ A}\]
\[1.\ \color{green}{If\ A =\begin{pmatrix}
5 & – 6 \\
3 & 7\\
\end{pmatrix},\ find\ 3\ A?}\ \hspace{15cm}\]
Solution: Refer Problem No. 6
\[2. \ \color{green}{Find\ the\ value\ of\ (2i\ +\ i)(i\ +\ 3i)}\ \hspace{15cm}\]
Solution: Refer Problem No. 2
\[3.\ \color{green}{Show\ that \ tan (765^0)\ =\ 1}\ \hspace{15cm}\]
Solution: Refer Problem Ex. 1
\[4.\ \color{green}{Evaluate:\ \lim\ _{x\ \to\ 2}\ \frac{x^2\ -\ 2^2}{x\ -\ 2}}\ \hspace{15cm}\]
Solution: Refer Problem No. 1
\[5.\ \color{green}{Find\ the\ order\ and\ degree\ of\ the\ differential\ equation\ \frac{d^3y}{dx^3}\ -\ 5\ \frac{d^2y}{dx^2}\ +\ 6\ \frac{dy}{dx}\ +\ 7\ y\ =\ 0}\ \hspace{10cm}\]
Solution: Refer Problem No. 1
\[\underline{PART\ -\ B}\]
\[6.\ \color{green}{Prove\ that\ the\ matrix \begin{pmatrix}
8 & 16 \\
6 & 12\\
\end{pmatrix},\ is\ singular.}\ \hspace{15cm}\]
Solution: Refer Problem No. 8
\[7.\ \color{green}{Find\ the\ Adjoint\ matrix\ of\ \begin{bmatrix}
5 & -6 \\
3 & 2 \\
\end{bmatrix}}\ \hspace{15cm}\]
Solution: Refer Problem No. 5
\[8.\ \color{green}{Find\ the\ 4^{th}\ term\ in\ the\ expansion\ of\ (x^2\ +\ \frac{1}{x})^8}\ \hspace{15cm}\]
Solution: Refer Problem No. 5
\[9:\ \color{green}{Find\ the\ modulus\ and\ amplitude\ of\ \sqrt{3} – \ i}\ \hspace{18cm}\]
Solution: Refer Problem No. 9
\[10.\ \color{green}{If \ ω\ is\ the\ cube\ roots\ of unity,\ what\ is\ the\ value\ of \ ω( ω\ +\ 1)}\ \hspace{15cm}\]
Solution: Refer Problem No. 1
\[11:\ \color{green}{Simplify\ \frac{cos\ 5 θ + i sin\ 5 θ} {cos\ 3 θ – i sin\ 3 θ}}\ \hspace{18cm}\]
Solution: Refer Problem\ No.3
\[12.\ \color{green}{Prove\ that\ Sin\ 40^{0}\ +\ Sin\ 20^{0}\ -\ Cos\ 10^{0}\ =\ 0}\ \hspace{15cm}\]
Solution: Refer Problem No. 5
\[13.\ \color{green}{Prove:\ Tan^{-1}\ (\frac{3x\ -\ x^3}{1\ -\ 3\ x^2})\ =\ 3\ Tan^{-1}}\ x\ \hspace{15cm}\]
Solution: Refer Problem 2 under Part-C
\[14:\ \color{green}{Prove\ that\ \frac{Sin\ 2A}{1\ +\ Cos\ 2A}\ =\ Tan\ A}\ \hspace{15cm}\]
Solution: Refer Problem Ex. 1
\[15.\ \color{green}{Evaluate:\ \lim\ _{x\ \to\ 0}\ \frac{Sin\ 2x}{Sin\ 4x}}\ \hspace{15cm}\]
Solution: Refer Problem No. 4
\[16.\ \color{green}{Find\ \frac{dy}{dx}\ if\ y\ =\ \frac{1}{x^2} +\ 3\ tan\ x\ -\ log\ x}\ \hspace{15cm}\]
Solution: Refer Problem No. 1
\[17.\ \color{green}{Find\ \frac{dy}{dx}\ if\ y\ =\ \frac{1\ +\ cos\ x}{1\ -\ cos\ x}}\ \hspace{15cm}\]
Solution: Refer Problem No. 10
\[18.\ \color{green}{Find\ \frac{d^2y}{dx^2}\ if\ y\ =\ x^4\ -\ 3\ x^3\ +\ 6\ x^2\ +\ 2\ x\ +\ 1}\ \hspace{15cm}\]
Solution: Refer Problem No. 5
\[19.\ \color{green}{Form\ the\ differential\ equation\ by\ eliminating\ the\ constant\ ‘a’\ in\ x^2\ +\ y^2\ =\ a^2}\ \hspace{15cm}\]
Solution: Refer Problem No.1
\[20.\ \color{green}{If\ u\ = 3\ x^3\ +\ 4\ \ y^3\ +\ 6\ x\ y\ ,\ find\ (i)\ \frac{∂u}{∂x}\ (ii)\ \frac{∂u}{∂y}}\ \hspace{15cm}\]
Solution: Refer Problem No. 5
\[\underline{PART\ -\ C}\]
\[21.\ A)\ i.\ \color{green}{Find\ the\ cofactor\ matrix\ of\ \begin{bmatrix}
2 & 3 & 4 \\
1 & 2 & 3 \\
-1 & 1 & 2 \\
\end{bmatrix}}\ \hspace{15cm}\]
Solution: Refer Example under cofactor element of matrix
\[\hspace{1cm}\ ii.\ \color{green}{Solve\ by\ using\ Cramers\ Rule}\ \hspace{20cm}\]
\[\hspace{1cm}\ \color{green}{4\ x\ +\ y\ +\ z\ =\ 6,\ 2\ x\ -\ y\ -\ 2\ z\ =\ -\ 6\ and\ x\ +\ y\ +\ z\ =\ 3}\ \hspace{15cm}\]
Solution: Refer Example 2
\[(OR)\]
\[\hspace{0.5cm}\ B)\ i.\ \color{green}{If\ A =\begin{bmatrix}
2 & -3 & 8 \\
21 & 6 & -6 \\
4 & -33 & 19 \\
\end{bmatrix}\ ,\ B =\begin{bmatrix}
1 & -29 & -8 \\
2 & 0 & 3 \\
17 & 15 & 4 \\
\end{bmatrix}}\ \hspace{7cm}\]\[\color{green}{ Prove\ that\ (A\ +\ B)^T\ =\ A^T\ +\ B^T}\hspace{5cm}\]
Solution: Refer Example 3 Under Addition and Subtraction of Matrices
\[\hspace{1cm}\ ii.\ \color{green}{Find\ the\ term\ independent\ of\ x\ in\ the\ expansion\ of\ (x^2\ +\ \frac{1}{x})^{12}}\ \hspace{15cm}\]
Solution: Refer Problem No. 9
\[22.\ A)\ i.\ \color{green}{Find\ the\ modulus\ and\ amplitude\ of\ \frac{1}{2} + i\ \frac{\sqrt{3}}{2}}\ \hspace{18cm}\]
Solution: Refer Problem No. 14
\[\hspace{1cm}\ ii)\ \color{green}{Show\ that\ the\ complex\ numbers\ 1-2i,\ -1+4i,\ 5 +8i\ and\ 7+2i\ form\ a\ parallelogram}\ \hspace{10cm}\]
Solution: Refer Problem No. 21
\[(OR)\]
\[B)\ i)\ \ \color{green}{Simplify\ using\ DeMoivre’s\ theorem:\ \frac{(cos\ 3θ + i sin\ 3θ)^{-5}\ (cos\ 2θ + i sin\ 2θ)^4} {(cos\ 4θ – i sin\ 4θ)^{-2}\ (cos\ 5θ – i sin\ 5θ)^3}}\ \hspace{10cm}\]
Solution: Refer Example 8
\[\hspace{1cm}\ ii)\ \color{green}{Solve\ x^3\ -\ 1\ =\ 0}\ \hspace{18cm}\]
Solution: Refer Example 4
\[23.\ A)\ i.\ \color{green} {Prove\ that\ Sin^2\ A\ +\ Sin^2\ (60^0\ +\ A)\ +\ Sin^2\ (60^0\ -\ A)\ =\ \frac{3}{2}}\ \hspace{15cm}\]
Solution: Refer Example 15
\[\hspace{1cm}\ ii)\ \color{green}{If\ Cos\ A\ =\ \frac{1}{7} \ and\ Cos\ B\ =\ \frac{13}{14},\ Prove\ that\ A\ -\ B\ =\ \frac{π}{3}}\ \hspace{15cm}\]
Solution: Refer Problem No. 2
\[(OR)\]
\[B)\ i)\ \ \color{green} {Prove:\ Tan^{-1}\ (\frac{3x\ -\ x^3}{1\ -\ 3\ x^2})\ =\ 3\ Tan^{-1}\ x}\ \hspace{15cm}\]
Solution: Refer Problem 2 under Part-C
\[\hspace{1cm}\ ii)\ \color{green} {Prove\ that\ Sin\ 10^{0}\ Sin\ 30^{0}\ Sin\ 50^{0}\ Sin\ 70^{0}\ =\ \frac{1}{16}}\ \hspace{15cm}\]
Solution: Refer Example 13
\[24.\ A)\ i.\ \color{green} {\lim\ _{x\ \to\ 3}\ \frac{x^3\ -\ 3^3}{x^4\ -\ 3^4}}\ \hspace{15cm}\]
Solution: Refer Example 4
\[\hspace{1cm}\ ii)\ \color{green}{Differentiate\ the\ following\ with\ respect\ to\ x\ (i)\ if\ y\ =\ x^3\ (1\ +\ log\ x)\ (ii)\ y\ =\ \frac{x +\ Tan\ x}{Cos\ x}}\ \hspace{15cm}\]
Solution: Refer Example 9
\[(OR)\]
\[B)\ i)\ \ \color{green} {Differentiate\ the\ following\ with\ respect\ to\ x\ (i)\ if\ y\ =\ x^3\ Sin\ x\ Tan\ x\ (ii)\ y\ =\ \frac{x +\ 6}{x\ -\ 7}}\ \hspace{15cm}\]
Solution: Refer Example 10
\[\hspace{1cm}\ ii)\ \color{green}{Find\ \frac{dy}{dx}\ if\ x^3\ +\ y^3\ =\ 3\ a\ x\ y}\ \hspace{15cm}\]
Solution: Refer Problem No. 14
\[25.\ A)\ i.\ \color{green} {If\ y\ =\ x^2\ Sin\ x,\ prove\ that\ x^2\ y_2\ -\ 4\ x\ y_1\ +\ (x^2\ +\ 6)y\ =\ 0}\ \hspace{15cm}\]
Solution: Refer Problem 7
\[\hspace{1cm}\ ii)\ \color{green}{Eliminate\ the\ constant\ by\ differentiate\ twice\ y\ =\ a\ Cos\ x\ +\ b\ Sin\ x}\ \hspace{15cm}\]
Solution: Refer Problem 5
\[(OR)\]
\[B)\ i)\ \ \color{green} {If\ u\ =\ x^3\ +\ y^3\ +\ 3\ x\ y^2\ ,\ prove\ that\ x\ \frac{∂u}{∂x}\ +\ y\ \frac{∂u}{∂y}\ =\ 3\ u}\ \hspace{15cm}\]
Solution: Refer Problem No. 5
\[\hspace{1cm}\ ii)\ \color{green}{If\ u\ =\ x^3\ +\ y^3\ +\ 4\ x\ y,\ find\ the\ x^2\ \frac{∂^2u}{∂x^2}\ +\ y^2\ \frac{∂^2u}{∂y^2}}\ \hspace{15cm}\]
Solution: Refer Problem No. 8
Like this:
Like Loading...
You must log in to post a comment.