\[\LARGE{\color {purple} {PART- A}}\]
\[\color {purple} {1.}\ \color {red} {Find\ the\ value\ of}\ (cos\ 30^0 + i sin\ 30^0 )^3 \hspace{18cm}\]
\[\color {blue}{Solution:}\ (cos\ 30^0 + i sin\ 30^0 )^3\ =\ cos\ 90^0 + i sin\ 90^0 \hspace{18cm}\]
\[= 0 + i (1)\ \hspace{10cm}\]
\[= i\ \hspace{10cm}\]
\[\LARGE{\color {purple} {PART- B}}\]
\[\color {purple} {2.}\ If\ x = cos\ \theta + i sin\ \theta,\ \color {red} {find\ x^m\ +\ \frac{1}{x^m}}\ \hspace{18cm}\]
\[\color {blue}{Solution:}\ x = cos\ \theta + i sin\ \theta\ \hspace{18cm}\]
\[x^m = (cos\ \theta + i sin\ \theta)^m =\ cos\ m \theta\ +\ i sin\ m \theta\ \hspace{10cm}\]
\[\frac{1}{x^m}\ = \frac{1}{cos\ m \theta\ +\ i sin\ m \theta} =\ cos\ m \theta\ -\ i sin\ m \theta\ \hspace{10cm}\]
\[x^m +\ \frac{1}{x^m}\ =\ cos\ m \theta\ +\ i sin\ m \theta\ +\ cos\ m \theta\ -\ i sin\ m \theta\ \hspace{10cm}\]
\[= 2cos\ m \theta\ \hspace{10cm}\]
\[\color {purple} {3:}\ \color {red} {Simplify:}\ \frac{cos\ 5 θ + i sin\ 5 θ} {cos\ 3 θ – i sin\ 3 θ}\ \hspace{18cm}\]
\[\color {blue}{Solution:}\ \frac{cos\ 5 θ + i sin\ 5 θ} {cos\ 3 θ + i sin\ 3 θ}= \frac{(cos\ θ + i sin\ θ)^5} {(cos\ θ – i sin\ θ)^{-3}} \hspace{18cm}\]
\[= (cos\ θ + i sin\ θ )^{5 +3 }\ \hspace{10cm}\]
\[= (cos\ θ + i sin\ θ )^8\ \hspace{10cm}\]
\[= cos\ 8θ + i sin\ 8θ\ \hspace{10cm}\]
\[\color {purple} {4.}\ \color {red} {Simplify}\ \frac{cos\ 3 θ – i sin\ 3 θ} {cos\ 2 θ – i sin\ 2 θ}\ \hspace{18cm}\]
\[\color {blue}{Solution:}\ \frac{cos\ 3 θ – i sin\ 3 θ} {cos\ 2 θ – i sin\ 2 θ}= \frac{(cos\ θ + i sin\ θ)^{-3}} {(cos\ θ + i sin\ θ)^{-2}} \hspace{18cm}\]
\[= (cos\ θ + i sin\ θ )^{-3\ +\ 2 }\ \hspace{10cm}\]
\[= (cos\ θ + i sin\ θ )^{-1}\ \hspace{10cm}\]
\[= cos\ θ – i sin\ θ\ \hspace{10cm}\]
\[\LARGE{\color {purple} {PART- C}}\]
\[\color {purple} {5.}\ \color {red} {Simplify\ using\ DeMoivre’s\ theorem:}\ \frac{(cos\ 3θ + i sin\ 3θ)^2\ (cos\ 4θ + i sin\ 4θ)^5} {(cos\ 2θ + i sin\ 2θ)^4\ (cos\ 3θ + i sin\ 3θ)^2}\ \hspace{10cm}\]
\[\color {blue}{Solution:}\ \frac{(cos\ 3θ + i sin\ 3θ)^2\ (cos\ 4θ + i sin\ 4θ)^5} {(cos\ 2θ + i sin\ 2θ)^4\ (cos\ 3θ + i sin\ 3θ)^2}\ \hspace{18cm}\]
\[= \frac{(cos\ θ + i sin\ θ)^{3 \times 2}\ (cos\ θ + i sin\ θ)^{4 \times 5}} {(cos\ θ + i sin\ θ)^{2 \times 4}\ (cos\ θ + i sin\ θ)^{3 \times 2 }}\ \hspace{8cm}\]
\[= \frac{(cos\ θ + i sin\ θ)^6\ (cos\ θ + i sin\ θ)^{20}} {(cos\ θ + i sin\ θ)^8\ (cos\ θ + i sin\ θ)^6}\ \hspace{8cm}\]
\[= (cos\ θ + i sin\ θ )^{6\ +\ 20\ -\ 8\ -\ 6 }\ \hspace{10cm}\]
\[= (cos\ θ + i sin\ θ )^{12}\ \hspace{10cm}\]
\[= cos\ 12θ\ +\ i sin\ 12θ\ \hspace{10cm}\]
\[\color {purple} {6.}\ \color {red} {Simplify\ using\ DeMoivre’s\ theorem:}\ \frac{(cos\ 2θ\ -\ i sin\ 2θ)^4\ (cos\ 4θ\ + i sin\ 4θ)^{-5}} {(cos\ 3θ\ +\ i sin\ 3θ)^2\ (cos\ 5θ\ – i sin\ 5θ)^{-3}}\ \hspace{10cm}\]
\[\color {blue}{Solution:}\ \frac{(cos\ 2θ\ -\ i sin\ 2θ)^4\ (cos\ 4θ\ + i sin\ 4θ)^{-5}} {(cos\ 3θ\ +\ i sin\ 3θ)^2\ (cos\ 5θ\ – i sin\ 5θ)^{-3}}\ \hspace{18cm}\]
\[= \frac{(cos\ θ + i sin\ θ)^{-2 \times 4}\ (cos\ θ + i sin\ θ)^{4 \times -5}} {(cos\ θ + i sin\ θ)^{3 \times 2}\ (cos\ θ + i sin\ θ)^{-3 \times -5 }}\ \hspace{8cm}\]
\[= \frac{(cos\ θ + i sin\ θ)^{-8\ (cos\ θ + i sin\ θ)^{-20}} {(cos\ θ + i sin\ θ)^6\ (cos\ θ + i sin\ θ)^15}\ \hspace{8cm}\]
\[= (cos\ θ + i sin\ θ )^{-8\ -\ 20\ -\ 6\ -\ 15 }\ \hspace{10cm}\]
\[= (cos\ θ + i sin\ θ )^{-49}\ \hspace{10cm}\]
\[= cos\ 49θ\ -\ i sin\ 49θ\ \hspace{910cm}\]
\[\color {purple} {7.}\ \color {red} {Simplify\ using\ DeMoivre’s\ theorem:}\ \frac{(cos\ 2θ – i sin\ 2θ)^7\ (cos\ 3θ + i sin\ 3θ)^{-5}} {(cos\ 4θ + i sin\ 4θ)^2\ (cos\ 5θ – i sin\ 5θ)^{-6}}\ \hspace{10cm}\]
\[\color {blue}{Solution:}\ Question\ No.\ 2\ Solution\ \hspace{18cm}\]
https://yanamtakshashila.com/2021/12/16/de-movires-theorem-revision/
You must log in to post a comment.